Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Medical Visualization ; 25(1):27-34, 2021.
Article in Russian | EMBASE | ID: covidwho-20237865

ABSTRACT

This paper examines the relevance of the use of a single irradiation of lungs in treatment of pneumonia caused by a new coronavirus infection. Clinical observations are presented that demonstrate perspectives in the treatment of this disease. Patients with severe pneumonia who were prescribed LD-RT (low-dose radiation therapy) at a dose of 0.5-1.5 Gy showed shorter recovery times and no complications. This method of treatment has shown its effectiveness in a number of studies from different countries, predicting success and economic benefits in its further use and study. A literature search containing information on relevant studies was carried out in PubMed, EMBASE, Web of Science and Google Scholar systems. Attention was focused on full-text articles given their general availability in a pandemic.Copyright © 2021 VIDAR Publishing House. All right reserved.

2.
Front Immunol ; 14: 1182927, 2023.
Article in English | MEDLINE | ID: covidwho-20243149

ABSTRACT

Low-dose radiation therapy (LDRT) can suppress intractable inflammation, such as that in rheumatoid arthritis, and is used for treating more than 10,000 rheumatoid arthritis patients annually in Europe. Several recent clinical trials have reported that LDRT can effectively reduce the severity of coronavirus disease (COVID-19) and other cases of viral pneumonia. However, the therapeutic mechanism of LDRT remains unelucidated. Therefore, in the current study, we aimed to investigate the molecular mechanism underlying immunological alterations in influenza pneumonia after LDRT. Mice were irradiated to the whole lung 1 day post-infection. The changes in levels of inflammatory mediators (cytokines and chemokines) and immune cell populations in the bronchoalveolar lavage (BALF), lungs, and serum were examined. LDRT-treated mice displayed markedly increased survival rates and reduced lung edema and airway and vascular inflammation in the lung; however, the viral titers in the lungs were unaffected. Levels of primary inflammatory cytokines were reduced after LDRT, and transforming growth factor-ß (TGF-ß) levels increased significantly on day 1 following LDRT. Levels of chemokines increased from day 3 following LDRT. Additionally, M2 macrophage polarization or recruitment was increased following LDRT. We found that LDRT-induced TGF-ß reduced the levels of cytokines and polarized M2 cells and blocked immune cell infiltration, including neutrophils, in BALF. LDRT-induced early TGF-ß production was shown to be a key regulator involved in broad-spectrum anti-inflammatory activity in virus-infected lungs. Therefore, LDRT or TGF-ß may be an alternative therapy for viral pneumonia.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Pneumonia, Viral , Animals , Mice , COVID-19/radiotherapy , Inflammation , Cytokines , Dimercaprol , Transforming Growth Factors
3.
Chinese Journal of Radiological Medicine and Protection ; 41(2):151-154, 2021.
Article in Chinese | EMBASE | ID: covidwho-2269947

ABSTRACT

With the global pandemic of COVID-19, cytokine storms in critical patients with pneumonia is really a problem and need to be solved immediately.Low dose radiation therapy (LDRT) has been temporarily used to treat pneumonia.In the past decades, researchers were dedicated to clarify the biological mechanism of LDRT.LDRT plays a unique role in the suppression of inflammation, preliminary outcomes have been acquired in critical patients with COVID-19 pneumonia, and radiotherapy community is paying attention to this treatment strategy.This review summarizes the application of LDRT in pneumonia, its biological mechanism, the result of LDRT in COVID-19 pneumonia, the existing problems and prospective in clinic.Copyright © 2021 Chinese Medical Association

4.
Strahlenther Onkol ; 2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2250140

ABSTRACT

PURPOSE: To assess the efficacy of lung low-dose radiotherapy (LD-RT) in the treatment of patients with COVID-19 pneumonia. MATERIALS AND METHODS: Ambispective study with two cohorts to compare treatment with standard of care (SoC) plus a single dose of 0.5 Gy to the whole thorax (experimental prospective cohort) with SoC alone (control retrospective cohort) for patients with COVID-19 pneumonia not candidates for admission to the intensive care unit (ICU) for mechanical ventilation. RESULTS: Fifty patients treated with LD-RT were compared with 50 matched controls. Mean age was 85 years in both groups. An increase in arterial oxygen partial pressure (PaO2)/fraction of inspired oxygen (PAFI) in the experimental LD-RT-treated group compared to the control group could not be found at 48 h after LD-RT, which was the primary endpoint of the study. However, PAFI values significantly improved after 1 month (473 vs. 302 mm Hg; p < 0.0001). Pulse oxymetric saturation/fraction of inspired oxygen (SAFI) values were also significantly higher in LD-RT-treated patients than in control patients at 1 week (405 vs. 334 mm Hg; p = 0.0157) and 1 month after LD-RT (462 vs. 326 mm Hg; p < 0.0001). All other timepoint measurements of the respiratory parameters were similar across groups. Patients in the experimental group were discharged from the hospital significantly earlier (23 vs. 31 days; p = 0.047). Fifteen and 26 patients died due to COVID-19 pneumonia in the experimental and control cohorts, respectively (30% vs. 48%; p = 0.1). LD-RT was associated with a decreased odds ratio (OR) for 1­month COVID-19 mortality (OR = 0.302 [0.106-0.859]; p = 0.025) when adjusted for potentially confounding factors. Overall survival was significantly prolonged in the LD-RT group compared to the control group (log-rank p = 0.027). No adverse events related to radiation treatment were observed. CONCLUSION: Treatment of frail patients with COVID-19 pneumonia with SoC plus single-dose LD-RT of 0.5 Gy improved respiratory parameters, reduced the period of hospitalization, decreased the rate of 1­month mortality, and prolonged actuarial overall survival compared to SoC alone.

5.
J Clin Med ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2200430

ABSTRACT

Several studies have shown that the plasma RNA of SARS-CoV-2 seems to be associated with a worse prognosis of COVID-19. In the present study, we investigated plasma RNA in COVID-19 patients treated with low-dose radiotherapy to determine its prognostic value. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 46 patients with COVID-19 pneumonia treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as laboratory variables, and SARS-CoV-2 serum viral load, were analyzed before LDRT, at 24 h, and one week after treatment. The mean age of the patients was 85 years, and none received any of the SARS-CoV-2 vaccine doses. The mortality ratio during the course of treatment was 33%. RT-qPCR showed amplification in 23 patients. Higher mortality rate was associated with detectable viremia. Additionally, C-reactive protein, lactate dehydrogenase, and aspartate aminotransferase were significant risk factors associated with COVID-19 mortality. Our present findings show that detectable SARS-CoV-2 plasma viremia 24 h before LDRT is significantly associated with increased mortality rates post-treatment, thus downsizing the treatment success.

6.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-1911153

ABSTRACT

The aim of our study was to investigate the changes produced by low-dose radiotherapy (LDRT) in the circulating levels of the antioxidant enzyme paraoxonase-1 (PON1) and inflammatory markers in patients with COVID-19 pneumonia treated with LDRT and their interactions with clinical and radiological changes. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 30 patients treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as PON1-related variables, cytokines, and radiological parameters were analyzed before LDRT, at 24 h, and 1 week after treatment. Twenty-five patients (83.3%) survived 1 week after LDRT. Respiratory function and radiological images improved in survivors. Twenty-four hours after LDRT, PON1 concentration significantly decreased, while transforming growth factor beta 1 (TGF-ß1) increased with respect to baseline. One week after LDRT, patients had increased PON1 activities and lower PON1 and TGF-ß1 concentrations compared with 24 h after LDRT, PON1 specific activity increased, lactate dehydrogenase (LDH), and C-reactive protein (CRP) decreased, and CD4+ and CD8+ cells increased after one week. Our results highlight the benefit of LDRT in patients with COVID-19 pneumonia and it might be mediated, at least in part, by an increase in serum PON1 activity at one week and an increase in TGF-ß1 concentrations at 24 h.

7.
Current Opinion in Toxicology ; 2022.
Article in English | ScienceDirect | ID: covidwho-1700619

ABSTRACT

The Earth was highly radioactive four billion years ago when life emerged. Even today, all humans are bombarded by 20,000 radiation strikes each second. Although high radiation doses are hazardous, organisms have evolved not only to tolerate lower-dose radiation but also to benefit by it (hormesis). Hormesis is prevailing in all species in various respects. An example is that hibakusha (Japanese A-bomb survivors) have longer lifespans and have lower risk of cancer, on average. Many microbes thrive in deep subsurface regions by consuming radiation as a source of nutrition. Low-dose radiation (LDR) is effective at treating severely affected COVID-19 patients, but the invalid linear no-threshold model (LNT) hinders the full beneficial use of LDR.

8.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: covidwho-1667055

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic continues to spread worldwide with over 260 million people infected and more than 5 million deaths, numbers that are escalating on a daily basis. Frontline health workers and scientists diligently fight to alleviate life-threatening symptoms and control the spread of the disease. There is an urgent need for better triage of patients, especially in third world countries, in order to decrease the pressure induced on healthcare facilities. In the struggle to treat life-threatening COVID-19 pneumonia, scientists have debated the clinical use of ionizing radiation (IR). The historical literature dating back to the 1940s contains many reports of successful treatment of pneumonia with IR. In this work, we critically review the literature for the use of IR for both diagnostic and treatment purposes. We identify details including the computed tomography (CT) scanning considerations, the radiobiological basis of IR anti-inflammatory effects, the supportive evidence for low dose radiation therapy (LDRT), and the risks of radiation-induced cancer and cardiac disease associated with LDRT. In this paper, we address concerns regarding the effective management of COVID-19 patients and potential avenues that could provide empirical evidence for the fight against the disease.


Subject(s)
COVID-19/radiotherapy , Lung/radiation effects , Pneumonia, Viral/radiotherapy , Radiation, Ionizing , SARS-CoV-2/radiation effects , COVID-19/epidemiology , COVID-19/virology , Humans , Lung/virology , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Prognosis , Radiation Dosage , Radiotherapy Dosage , Risk Factors , SARS-CoV-2/physiology
9.
Radiat Oncol ; 17(1): 10, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1643167

ABSTRACT

BACKGROUND: Low dose radiotherapy (LDRT) of whole lungs with photon beams is a novel method for treating COVID-19 pneumonia. This study aimed to estimate cancer risks induced by lung LDRT for different radiotherapy delivery techniques. METHOD: Four different radiotherapy techniques, including 3D-conformal with anterior and posterior fields (3D-CRT AP-PA), 3D-conformal with 8 coplanar fields (3D-CRT 8 fields), eight fields intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy using 2 full arcs (VMAT) were planned on the CT images of 32 COVID-19 patients with the prescribed dose of 1 Gy to the lungs. Organ average and maximum doses, and PTV dose distribution indexes were compared between different techniques. The radiation-induced cancer incidence and cancer-specific mortality, and cardiac heart disease risks were estimated for the assessed techniques. RESULTS: In IMRT and VMAT techniques, heart (mean and max), breast (mean, and max), and stomach (mean) doses and also maximum dose in the body were significantly lower than the 3D-CRT techniques. The calculated conformity indexes were similar in all the techniques. However, the homogeneity indexes were lower (i.e., better) in intensity-modulated techniques (P < 0.03) with no significant differences between IMRT and VMAT plans. Lung cancer incident risks for all the delivery techniques were similar (P > 0.4). Cancer incidence and mortality risks for organs located closer to lungs like breast and stomach were higher in 3D-CRT techniques than IMRT or VMAT techniques (excess solid tumor cancer incidence risks for a 30 years man: 1.94 ± 0.22% Vs. 1.68 ± 0.17%; and women: 6.66 ± 0.81% Vs. 4.60 ± 0.43%: cancer mortality risks for 30 years men: 1.63 ± 0.19% Vs. 1.45 ± 0.15%; and women: 3.63 ± 0.44% Vs. 2.94 ± 0.23%). CONCLUSION: All the radiotherapy techniques had low cancer risks. However, the overall estimated risks induced by IMRT and VMAT radiotherapy techniques were lower than the 3D-CRT techniques and can be used clinically in younger patients or patients having greater concerns about radiation induced cancers.


Subject(s)
COVID-19/radiotherapy , Neoplasms, Radiation-Induced/prevention & control , Radiotherapy Planning, Computer-Assisted , Adult , Aged , Breast/radiation effects , COVID-19/pathology , Female , Heart/radiation effects , Heart Disease Risk Factors , Humans , Iran , Lung/pathology , Lung/radiation effects , Male , Middle Aged , Neoplasms, Radiation-Induced/diagnosis , Neoplasms, Radiation-Induced/etiology , Organs at Risk/radiation effects , Pneumonia, Viral/radiotherapy , Prognosis , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Risk Assessment , SARS-CoV-2
10.
Respir Med ; 186: 106531, 2021 09.
Article in English | MEDLINE | ID: covidwho-1300990

ABSTRACT

The covid-19 pandemic has been affecting many countries across the world and lost precious lives. Most patients suffer from respiratory disease which progresses to the severe acute respiratory syndrome, termed as SARS-CoV-2 pneumonia. A systemic inflammatory response occurs in SARS-CoV-2 pneumonia severely ill patients, The inflammation process if uncontrolled has a detrimental effect, and the release of cytokines play an important role leading to lung fibrosis. Radiation therapy used in low doses has an anti-inflammatory and immunomodulatory effect. Its low cost, wider availability, and decreased risk of acute side effects can reduce the burden on the health care system.


Subject(s)
COVID-19/radiotherapy , Radiotherapy/methods , Severe Acute Respiratory Syndrome/radiotherapy , COVID-19/complications , COVID-19/virology , Cytokines/metabolism , Disease Progression , Humans , Inflammation , Inflammation Mediators/metabolism , Macrophages , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/radiotherapy , Radiotherapy Dosage , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severity of Illness Index
11.
Strahlenther Onkol ; 197(11): 1010-1020, 2021 11.
Article in English | MEDLINE | ID: covidwho-1298545

ABSTRACT

PURPOSE: To evaluate the efficacy and safety of lung low-dose radiation therapy (LD-RT) for pneumonia in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: Inclusion criteria comprised patients with COVID-19-related moderate-severe pneumonia warranting hospitalization with supplemental O2 and not candidates for admission to the intensive care unit because of comorbidities or general status. All patients received single lung dose of 0.5 Gy. Respiratory and systemic inflammatory parameters were evaluated before irradiation, at 24 h and 1 week after LD-RT. Primary endpoint was increased in the ratio of arterial oxygen partial pressure (PaO2) or the pulse oximetry saturation (SpO2) to fractional inspired oxygen (FiO2) ratio of at least 20% at 24 h with respect to the preirradiation value. RESULTS: Between June and November 2020, 36 patients with COVID-19 pneumonia and a mean age of 84 years were enrolled. Seventeen were women and 19 were men and all of them had comorbidities. All patients had bilateral pulmonary infiltrates on chest X­ray. All patients received dexamethasone treatment. Mean SpO2 pretreatment value was 94.28% and the SpO2/FiO2 ratio varied from 255 mm Hg to 283 mm Hg at 24 h and to 381 mm Hg at 1 week, respectively. In those who survived (23/36, 64%), a significant improvement was observed in the percentage of lung involvement in the CT scan at 1 week after LD-RT. No adverse effects related to radiation treatment have been reported. CONCLUSIONS: LD-RT appears to be a feasible and safe option in a population with COVID-19 bilateral interstitial pneumonia in the presence of significant comorbidities.


Subject(s)
COVID-19/radiotherapy , Radiotherapy, Conformal/methods , SARS-CoV-2 , Aged , Aged, 80 and over , Anti-Inflammatory Agents/therapeutic use , C-Reactive Protein/analysis , COVID-19/diagnostic imaging , COVID-19/mortality , COVID-19/therapy , Cause of Death , Combined Modality Therapy , Comorbidity , Dexamethasone/therapeutic use , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Hospital Mortality , Humans , Interleukin-6/blood , L-Lactate Dehydrogenase/blood , Lung/diagnostic imaging , Lung/radiation effects , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/radiotherapy , Lung Diseases, Interstitial/therapy , Male , Oxygen/blood , Oxygen/therapeutic use , Oxygen Inhalation Therapy , Partial Pressure , Prospective Studies , Radiotherapy Dosage , Severity of Illness Index , Tomography, X-Ray Computed , Treatment Outcome
12.
J Cancer Res Clin Oncol ; 147(9): 2621-2624, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1293373

ABSTRACT

INTRODUCTION: Performing low-dose radiation therapy (LDRT) is a new approach to treat pneumonia resulting from COVID-19 disease. This paper aims to evaluate the effectiveness of LDRT in treating COVID-19 patients. METHODS: Medline was searched for "low-dose" and "radiation therapy" and "COVID-19" and "pneumonia" and "inflammation", to retrieve papers that published on low-dose radiation therapy to improve mortality of COVID-19 patients. Only clinical investigations that included original and case report papers were selected for this paper. RESULTS: The completed clinical trials that have performed LDRT to treat COVID-19 showed that the effectiveness of LDRT in treating COVID-19 was up to 90%. CONCLUSION: The vast majority of primary and secondary outcomes of clinical trial investigations regarding LDRT in treating COVID-19 found that LDRT can be considered a feasible treatment to improve mortality of COVID-19 patients.


Subject(s)
COVID-19/mortality , Radiotherapy/methods , SARS-CoV-2/radiation effects , COVID-19/radiotherapy , COVID-19/virology , Dose-Response Relationship, Radiation , Humans , Prognosis , SARS-CoV-2/isolation & purification , Survival Rate
13.
Int J Radiat Biol ; 97(3): 302-312, 2021.
Article in English | MEDLINE | ID: covidwho-977319

ABSTRACT

PURPOSE: It seems that 2020 would be always remembered by the name of novel coronavirus (designated as SARS-CoV-2), which exerted its deteriorating effects on the health care, economy, education, and political relationships. In August 2020 more than eight hundred thousand patients lost their lives due to acute respiratory syndrome. In the limited list of therapeutic approaches, the effectiveness of low-dose radiation therapy (LD-RT) for curing inflammatory-related diseases have sparkled a light that probably this approach would bring promising advantages for COVID-19 patients. LD-RT owns its reputation from its ability to modulate the host inflammatory responses by blocking the production of pro-inflammatory cytokines and hampering the activity of leukocytes. Moreover, the cost-effective and availability of this method allow it to be applied to a large number of patients, especially those who could not receive anti-IL-6 treatments in low-income countries. But enthusiasm for applying LD-RT for the treatment of COVID-19 patients has been muted yet. CONCLUSION: In this review, we take a look at LD-RT mechanisms of action in the treatment of nonmalignant diseases, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if LD-RT might be a promising therapeutic approach in COVID-19 patients.


Subject(s)
COVID-19/radiotherapy , Radiation Dosage , COVID-19/complications , COVID-19/physiopathology , Humans , Radiation Injuries/etiology , Radiotherapy Dosage
14.
Ann Thorac Med ; 15(4): 199-207, 2020.
Article in English | MEDLINE | ID: covidwho-886244

ABSTRACT

Coronavirus disease-2019 (COVID-19) has become a global health crisis. Mortality associated with COVID-19 is characterized mainly by acute respiratory distress syndrome (ARDS), sepsis, pneumonia, and respiratory failure. The pathogenesis of the disease is known to be associated with pro-inflammatory processes after virus infection. Hence, various therapeutic strategies are being developed to control the inflammation and cytokine storm in COVID-19 patients. Recently, low-dose radiation therapy (LDRT) has been suggested for the treatment of pneumonia/ADRS in COVID-19 patients through irradiation of lungs by gamma/X-ray. In this direction, a few clinical trials have also been initiated. However, a few recent publications have raised some concerns regarding LDRT, especially about possibilities of activation/aggressiveness of virus (severe acute respiratory syndrome coronavirus 2 in case of COVID-19), lung injury and risk of second cancer after low-dose therapy. The present manuscript is an attempt to analyze these apprehensions based on cited references and other available literature, including some from our laboratory. At this point, LDRT may be not the first line of therapy. However, based on existing anti-inflammatory evidence of LDRT, it needs encouragement as an adjuvant therapy and for more multi-centric clinical trials. In addition, it would be worth combining LDRT with other anti-inflammatory therapies, which would open avenues for multi-modal therapy of pneumonia/ARDS in COVID-19 patients. The mode of irradiation (local lung irradiation or whole-body irradiation) and the window period after infection of the virus, need to be optimized using suitable animal studies for effective clinical outcomes of LDRT. However, considering ample evidence, it is time to look beyond the apprehensions if a low dose of radiation could be exploited for better management of COVID-19 patients.

15.
Radiother Oncol ; 153: 289-295, 2020 12.
Article in English | MEDLINE | ID: covidwho-857114

ABSTRACT

BACKGROUND AND PURPOSE: The objective of this work is to evaluate the risk of carcinogenesis of low dose ionizing radiation therapy (LDRT), for treatment of immune-related pneumonia following COVID-19 infection, through the estimation of effective dose and the lifetime attributable risk of cancer (LAR). MATERIAL AND METHODS: LDRT treatment was planned in male and female computational phantoms. Equivalent doses in organs were estimated using both treatment planning system calculations and a peripheral dose model (based on ionization chamber measurements). Skin dose was estimated using radiochromic films. Later, effective dose and LAR were calculated following radiation protection procedures. RESULTS: Equivalent doses to organs per unit of prescription dose range from 10 mSv/cGy to 0.0051 mSv/cGy. Effective doses range from 204 mSv to 426 mSv, for prescription doses ranging from 50 cGy to 100 cGy. Total LAR for a prescription dose of 50 cGy ranges from 1.7 to 0.29% for male and from 4.9 to 0.54% for female, for ages ranging from 20 to 80 years old. CONCLUSIONS: The organs that mainly contribute to risk are lung and breast. Risk for out-of-field organs is low, less than 0.06 cases per 10000. Female LAR is on average 2.2 times that of a male of the same age. Effective doses are of the same order of magnitude as the higher-dose interventional radiology techniques. For a 60 year-old male, LAR is 8 times that from a cardiac CT, when prescription dose is 50 cGy.


Subject(s)
COVID-19/radiotherapy , Carcinogenesis/radiation effects , Neoplasms, Radiation-Induced/epidemiology , Organs at Risk , Phantoms, Imaging , Adult , Age Factors , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Risk Assessment/methods , Risk Factors , SARS-CoV-2 , Sex Factors , Young Adult
16.
Int J Radiat Biol ; 96(11): 1323-1328, 2020 11.
Article in English | MEDLINE | ID: covidwho-759755

ABSTRACT

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pandemic disease and is the major cause of deaths worldwide. The clinical complexities (inflammation, cytokine storm, and multi-organ dysfunction) associated with COVID-19 poses constraints to effective management of critically ill COVID-19 patients. Low dose radiation therapy (LDRT) has been evaluated as a potential therapeutic modality for COVID-19 pneumonia. However, due to heterogeneity in disease manifestation and inter-individual variations, effective planning for LDRT is limited for this large-scale event. 2-deoxy-D-glucose (2-DG) has emerged as a polypharmacological agent for COVID-19 treatment due to its effects on the glycolytic pathway, anti-inflammatory action, and interaction with viral proteins. We suggest that 2-DG will be a potential adjuvant to enhance the efficacy of LDRT in the treatment of COVID-19 pneumonia. Withal, azido analog of 2-DG, 2-azido-2-DG can produce rapid catastrophic oxidative stress and quell the cytokine storm in critically ill COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Cytokine Release Syndrome/therapy , Deoxyglucose/therapeutic use , Pneumonia, Viral/therapy , COVID-19 , Combined Modality Therapy , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Deoxyglucose/pharmacology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Radiotherapy Dosage , SARS-CoV-2
17.
Strahlenther Onkol ; 196(8): 679-682, 2020 08.
Article in English | MEDLINE | ID: covidwho-209949

ABSTRACT

In the current dismal situation of the COVID-19 pandemic, effective management of patients with pneumonia and acute respiratory distress syndrome is of vital importance. Due to the current lack of effective pharmacological concepts, this situation has caused interest in (re)considering historical reports on the treatment of patients with low-dose radiation therapy for pneumonia. Although these historical reports are of low-level evidence per se, hampering recommendations for decision-making in the clinical setting, they indicate effectiveness in the dose range between 0.3 and 1 Gy, similar to more recent dose concepts in the treatment of acute and chronic inflammatory/degenerative benign diseases with, e.g., a single dose per fraction of 0.5 Gy. This concise review aims to critically review the evidence for low-dose radiation treatment of COVID-19 pneumopathy and discuss whether it is worth investigating in the present clinical situation.


Subject(s)
Coronavirus Infections/radiotherapy , Pneumonia, Viral/radiotherapy , Severe Acute Respiratory Syndrome/radiotherapy , COVID-19 , Evidence-Based Medicine , Humans , Pandemics , Radiotherapy Dosage , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL